Archives de l’année : 2016


Post-doctoral position in computational mechanics

Required Education / Niveau requis : PhD in computational mechanics / applied mathematics From / Date de début : right away Duration / Durée : 2 years Salary : 3136 euros gross per month Context / Contexte Domain decomposition methods are well established approaches for solv ing large scale problems on parallel computers. In the […]


Ph.D. Scholarship « SimuIation of waves in complex Media using the extended finite element method » – Université de Liège

The proposed research project is about the simulation of mechanical wave propagation in the underground soil and in geophysical fluid flows. These application areas hold major challenges, from both the scientific, technical, environmental and social perspective. To give a single, topical example, hydraulic fracking, a controversial technique to extract hydrocarbons, poses important questions with respect […]


17/10/2016 Soutenance Habilitation à Diriger des Recherches de Delphine BRANCHERIE

Delphine BRANCHERIE présentera ses travaux : Contribution à la modélisation numérique du comportement ultime des structures A l’Université de technologie de Compiègne Le lundi 17 octobre 2016 à 10h Amphi Gauss – Centre de Recherche devant le jury composé de : M. BERGHEAU Jean-Michel, Professeur des Universités, Ecole Nationale d’Ingénieurs de Saint-Etienne, Laboratoire de Tribologie […]


Post doctoral position en Vibro-acoustique – Université de Cambrige

A position exists, for a Research Assistant/Associate in the Department of Engineering, to work on a project funded by the EPSRC concerning the use of experimental data in computational models of noise and vibration. Despite the availability of sophisticated mathematical and computational modelling techniques, some components in a built-up structure can be so complex that […]


Post-doctoral position: « Coupling of numerical solvers for large-scale wavepropagation from source to structure »

Scientific context and objectives The Spectral Element Method (SEM) is currently very popular for large-scale wave propagation in geophysics, while the Finite Element Method (FEM) is much more widely used for vibration of structures in the context of Earthquake Engineering. This implies in particular that the two communities have developed efficient and validated solvers based […]